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The scaling behaviour of high-order structure functions Gp(r) = 〈(u(x + r) − u(x))p〉
is studied in a variety of laboratory turbulent flows. The statistical accuracy of the
structure function benefits from novel instrumentation for its real-time measurement.
The nature of statistical errors is discussed extensively. It is argued that integration
times must increase for decreasing separations r. Based on the statistical properties of
probability density functions we derive a simple estimate of the required integration
time for moments of a given order. We further give a way for improving this accuracy
through careful extrapolation of probability density functions of velocity differences.

Structure functions are studied in two different kinematical situations. The (stan-
dard) longitudinal structure functions are measured using Taylor’s hypothesis. In
the transverse case an array of probes is used and no recourse to Taylor’s hypoth-
esis is needed. The measured scaling exponents deviate from Kolmogorov’s (1941)
prediction, more strongly so for the transverse exponents.

The experimental results are discussed in the light of the multifractal model that
explains intermittency in a geometrical framework. We discuss a prediction of this
model for the form of the structure function at scales where viscosity becomes of
importance.

1. Introduction
About 15 years ago a paper was published in this Journal in which a careful study

was made of high-order structure functions in turbulence (Anselmet et al. 1984). The
structure function is defined as

Gp(r) = 〈(∆u(r))p〉, (1.1)

where the velocity difference ∆u(r) is measured over a distance r, ∆u(r) = u(x+r)−u(x)
and the average is done over x (which is interpreted as an ensemble average).
According to Kolmogorov (1941), the structure function has scaling behaviour

Gp(r) ∼ rζ(p). (1.2)

The possible existence of universal scaling exponents ζ(p) is one of the most exciting
aspects of turbulence. Anselmet et al. (1984) verified that the scaling exponent ζ(p)
differed significantly from Kolmogorov’s similarity prediction ζ(p) = p/3. This has
spawned considerable theoretical and experimental activity in the past years, an
extensive historical account of which has been given by Frisch (1995). Using scaling
concepts from the physical theory of critical phenomena a new model for this
‘anomalous’ (that is deviant from self-similar) behaviour of the function ζ(p) was
described by Mandelbrot (1974) and by Parisi & Frisch (1985). It was carried over
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to the statistical description of chaotic motion in low-dimensional dynamical systems
by Benzi et al. (1984) and Halsey et al. (1986).

Similar scaling properties could be found for the dissipation field ε(r) (Sreenivasan
& Meneveau 1988; Chhabra et al. 1989; Meneveau & Sreenivasan 1991). Whereas ε is
a dissipation-range quantity, the scaling of the velocity increments ∆u(r) is a property
of the inertial-range statistics of turbulence. The relation between these two points of
view is the subject of the refined similarity hypothesis by Kolmogorov (1962).

In the present paper we will report on laboratory experiments in turbulent air
flows. These experiments concern a precise measurement of the scaling exponent ζ(p)
for both longitudinal and transverse velocity differences and the precise form of the
structure function Gp(r). In all our experiments the measured component of u points
in the direction of the mean flow. Structure functions can be measured for the case
that r is parallel to u (longitudinal structure functions GLp (r)) and for the case that r is

perpendicular to u (transverse structure functions GTp (r)). Let us call ζL(p) and ζT (p)
the associated scaling exponents. On the basis of scaling arguments alone, one would
expect ζL(p) and ζT (p) to be the same. A point of concern of this paper, however, is
the possible existence of differences between these two exponents.

Transverse structure functions with r parallel to the mean flow direction (and
thus u perpendicular to U ) have been measured by Saddoughi & Veeravalli (1994)
who show results for G2, G3 and power spectra, and by Camussi et al. (1996) who
concentrate on relative scaling properties of high-order moments. The experimental
assessment of isotropy is the main point of Saddoughi & Veeravalli (1994) who give an
excellent review of earlier work on this problem. Transverse structure functions with r
perpendicular to the mean flow direction were measured by Noullez et al. (1997) using
a novel laser-spectroscopic technique. The information contained in these structure
functions is comparable to that obtained by us, but the optical method used by them
allows resolution of much smaller scales.

The average in (1.1) can be trivially written as an integral over the probability
density function Pr(∆u) of velocity differences ∆u that are measured a distance r
apart. Thus, the structure function Gp(r) is the pth moment of the probability density
function Pr(∆u) of velocity differences ∆u(r). The probability density function (PDF)
PL
r (∆u) of longitudinal velocity differences is skewed, whereas the PDF of transverse

∆u, PT
r (∆u), is symmetric. The skewness of the longitudinal PDF is connected with

the spectral energy cascade and underlies the existence of the odd-order moments.
The difference between longitudinal and transverse PDFs can be understood on basis
of a simple symmetry argument. In the longitudinal configuration the possibility of
conveying information from the point x to the point x+ r depends on the sign of the
velocity difference ∆u; hence the asymmetry of the PDF. In the transverse case with
the velocities u(x) and u(x + r) perpendicular to r, no such asymmetry can exist for
homogeneous turbulence.

The probability density functions (and not just their moments) may also have
scaling properties. A comparison to intermittency models has been reported by
Castaing, Gagne & Hopfinger (1990), Chabaud et al. (1994) and Benzi et al. (1991).
Because the statistical accuracy of high-order moments is problematic, it may be
advantageous to directly work with the PDFs rather than with their moments.

In § 2 we describe the theoretical framework of our experiments. A brief introduction
to intermittency models is given but we concentrate on the multifractal model by
Parisi & Frisch (1985). For discriminating intermittency models and for testing further
consequences it is of key importance to know the scaling exponents ζ(p) for large
values of p and the precise form of the structure functions Gp(r). The statistical
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accuracy of high-order moments is a difficult problem because they are determined
by the increasingly rare instances of increasingly violent turbulent events.

A central point of our experimental work has been the design of novel turbulence
instrumentation that allows the real-time processing of extremely large data sets. The
flow configuration used is discussed in § 3.1 and the instrumentation is detailed in
§ 3.2. Another key aspect of our experiments is the simultaneous measurement of
longitudinal and transverse structure functions using multi-probe arrays.

Results on probability density functions (PDFs) are given in § 4 where we compare
the longitudinal and transverse PDFs and point to a surprising coincidence of the
negative velocity tails of these PDFs. We confront our data with an intermittency
model for the PDF. Whilst the statistical accuracy of high-order moments rapidly
diminishes with increasing order, we derive estimates in § 5, both of this accuracy and
of the highest moment that can be measured reliably. These estimates are based either
on the correlation structure of moments or on the statistical accuracy of measured
PDFs.

The use of stretched exponentials to represent the low-probability tails of PDFs is
studied in § 6. This is a purely phenomenological approach and the correctness of this
representation is assessed using statistical tests. This representation is used to improve
the statistical accuracy of high-order moments.

Measured longitudinal and transverse structure functions are discussed in § 7. Of
prime interest is the value of the scaling exponents ζ(p), but we also emphasize the
precise form of the structure function GLp (r). We show that the residual of GLp (r) after

dividing out the scaling rζ
L(p) has an interesting dependence on p. The transverse

experiments were restricted to grid turbulence. It turns out that the deviation of ζT (p)
from Kolmogorov’s prediction is larger than that of ζL(p). In § 8 we formulate several
speculations about this result.

2. Intermittency models
In the past few years, models of the small-scale structure of turbulence have

been widely discussed in the literature. From those we have chosen to describe in
some depth the multifractal model by Parisi & Frisch (1985). Although this paper’s
main emphasis is on experimental results, confrontation with the predictions of this
particular model leads to valuable new insights. First, however, we will briefly recall
two exact results.

One of the few exact results of the statistical theory of turbulence is the Kolmogorov–
Kármán–Howarth equation that expresses a relation between the third- and second-
order longitudinal structure functions (Monin & Yaglom 1975)

G3(r) = − 4
5
εr + 6ν

dG2(r)

dr
. (2.1)

At scales r much larger than the Kolmogorov scale η, but much smaller than an
external length scale L, (2.1) predicts that G3(r) = − 4

5
εr. An equivalent relation

is G3(r)/v
3
k = − 4

5
r/η, where velocities are non-dimensionalized by the Kolmogorov

velocity vk and length scales by the Kolmogorov length η.
Equation (2.1) applies to the case of stationary, homogenous, and isotropic turbu-

lence. This is a situation that is difficult to realize in the laboratory. In most laboratory
experiments, the turbulence is not stationary (in space) as it is, for example, driven
by shear or decaying behind a grid. In these cases an extra term that involves the
forcing must be added to the right-hand side of (2.1). Yakhot (1995) has argued
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that the presence of this term causes an asymmetry between odd and even structure
functions. This asymmetry has the result that in the inertial range G2(r) cannot be
written as [G3(r)]

ζ(2), even when ζ(3) is precisely one. As a consequence, the even
structure functions are not simply rescaled versions of the odd-order ones and the
exponents that are determined from the approximate scaling of Gp(r) for even and odd
p do not fall on a smooth curve. Vassilicos (1992) pointed out that such asymmetry
would be consistent with a multispiral nature of small-scale turbulence and a general
multifractal framework for even/odd asymmetry has been given by Vainshtein &
Sreenivasan (1994).

For the comparison of longitudinal and transverse structure functions it is useful
to recall another exact relation

GT2 (r) = GL2 (r) +
r

2

dGL2 (r)

dr
, (2.2)

that can be derived assuming isotropy and incompressibility. Similar relations can
be derived for higher-order structure functions, but they do not seem to be useful
because increasingly complicated correlations between transverse and longitudinal
velocity differences are involved. Therefore, the statistical properties of longitudinal
and transverse velocity differences are not related in a trivial way. Equation (2.2) allows
a precise test of isotropy using measured longitudinal second-order longitudinal and
transverse structure functions.

The prediction by Kolmogorov (1941) for the scaling exponents ζ(p), ζ(p) = p/3,
implies that the energy dissipation is constant. The log-normal model allows for fluctu-
ations of the local average εr of the dissipation over intervals of size r (Kolmogorov
1962). Specifically, it assumes that the distribution of log εr is a Gaussian whose width
σ depends on r as σ = µ log r, where µ = 2− ζ(6) is the adjustable parameter of the
log-normal model. The scaling exponent for the moments of velocity differences then is

ζ(p) =
p

3
− 1

18
µp(p− 3). (2.3)

The log-normal model predicts a maximum of the exponent ζ(p) at p = 1
2
(6/µ + 3).

Currently accepted values of µ are µ ≈ 0.2, in which case the maximum would be
reached at p ≈ 16. It is a challenge to measure structure functions that are still
statistically meaningful at these large orders.

The log-normal model involves fluctuations of the dissipation rate εr , a viscous
range quantity. It leads to a prediction for the statistics of velocity increments, an
inertial range quantity, because fluctuations of ∆u(r) and εr are related. This relation
is the subject of Kolmogorov’s refined similarity hypothesis that has been verified
experimentally by Stolovitzky, Kailasnath & Sreenivasan (1992).

2.1. The multifractal model

The multifractal model is an attempt to capture intermittency in a geometric frame-
work. It assumes that velocity differences locally scale as ∆u(r) ∼ rh. The exponents
h are all h < 1, and imply that derivatives of the velocity field are singular. Therefore
we will refer to h as the singularity strength. The turbulent fluctuation field consists
of a whole range of singularities whose strengths at scale r have a probability that is
proportional to r3−D(h). The function D(h) can be interpreted as the fractal dimension
of the set of singularities with strength h. In three dimensions r3−D(h) is the fraction
of space occupied by those exponents. Ensemble averages are now thought of as
averages over the distribution of singularities. Notably, for the moments of velocity
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increments

Gp(r) ∼
∫ hmax

0

rph r3−D(h) dh. (2.4)

In the limit r → 0 this equation singles out a particular exponent h̃, and a steepest
descent argument gives

ζ(p) = 3− D(h̃) + ph̃, where h̃ is defined by
dD(h)

dh

∣∣∣∣
h=h̃

= p. (2.5)

Equation (2.5) illustrates that the scaling exponent ζ(p) and the dimension function
D(h) are two complementary ways to describe the small-scale structure of turbu-
lence. The function D(h) is convex. Therefore, the smallest values of h, which are
the strongest singularities, correspond to the largest values of p, the highest-order
moments. Asymptotically, the highest-order moments are determined by the strongest
singularity that can be detected.

The multifractal model per se does not provide an explanation for the scaling
exponent ζ(p), other than its association with a geometric property (the dimension
D(h)) of the small-scale velocity field. In order to arrive at a direct comparision with
experimental ζ(p), several models for D(h) have been proposed. One of these models is
the random beta model which owes its name to the random positive numbers βi from
which a random multiplicative process is built for velocity differences vn(rn) at level

n of a cascade, vn = v0r
1/3
n (β1β2 · · · βn)1/3 (Benzi et al. 1984). It is assumed that the

random numbers βi and βi+1 are uncorrelated and distributed according to a function
F(β) which is taken to be of bimodal form F(β) = qδ(β − 1) + (1 − q)δ(β − 1/2).
Therefore, the breakdown to smaller scales in a binary cascade would be either
space-filling (β = 1) or confined to planes (β = 1/2). The associated probabilities are
q and 1 − q, respectively. The scaling exponent ζ(p) and its companion dimension
spectrum D(h) follow from F(β) in a straightforward manner. It was found that
experimental results are reproduced well by selecting the single adjustable parameter
q to be q = 0.875. Another quite similar single-parameter model is the p-model by
Meneveau & Sreenivasan (1987). Narrowing the distribution F(β) to a single β leads
to the Beta-model by Frisch (1995) which predicts a scaling exponent that depends
linearly on p, ζ(p) = 3− D + p(D − 2)/3.

Quite recently She & Leveque (1994) have proposed a model that does not appeal
to adjustable parameters and rests on the assumption of filamentary structures as
carriers of the strongest singularities and a space-filling field that carries the mean
dissipation. A further assumption concerns the way intermediate singularity structures
can be interpolated between these two extremes. This assumption is formulated in
terms of moments n of the fluctuating dissipation and was tested experimentally for
small n (n = 3.7) by Chavarria, Baudet & Ciliberto (1995).

In the past few years there have been several attempts to extend scaling arguments
into the intermediate viscous range r ∼< 20η. In laboratory experiments, the inertial

range where the scaling Gp(r) ∼ rζ(p) can be observed is often small and extension of
scaling theories to smaller distances is extremely useful as it gives a larger range of
scales from which a scaling exponent can be determined. Attempts in this direction
have been reported by Sirovich, Smith & Yakhot (1994) and Stolovitzky, Sreenivasan
& Juneja (1993). Universally valid small-r approximations to Gp(r) may point to
interesting physics in the crossover from inertial to viscous dynamics.

Based on phenomenological arguments, Benzi et al. (1993) have proposed a
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parametrization of Gp(r), as Gp(r) =
(
fp(r)r

)ζ(p)
. The function fp(r) models deviations

from ideal scaling behaviour. From experimental data it appears that the function
f2p(r) has a very weak dependence on p = 1, 2, . . . . Similarly, the function f2p+1(r)
has a very weak dependence on p. However, it is found that there is an appreciable
difference between f2p(r) and f2p+1(r) for even- and odd-order moments. As is well
known, the statistical accuracy of odd-order longitudinal moments is inferior to that
of even-order moments. This has led Benzi et al. (1993) to compute the odd-order
moments from the absolute value of velocity differences |∆u(r)|. Of course, in this
case the asymmetry between f2p(r) and f2p+1(r) vanishes.

Benzi et al. (1993) find that the resulting fp(r) is the same for all p. In this case,
the function fp may be eliminated by plotting Gp(r) against another moment Gp′(r)
(with e.g. p′ = 3) in a log-log plot. This leads to considerable improvement of scaling
behaviour. A comment on this so-called ‘extended self-similarity’ was given by van
de Water & Herweijer (1995). Defining odd-order longitudinal moments in terms of
absolute values of ∆u(r) ignores the skewness that we deem an essential property of
the statistics of small-scale velocity fluctuations. Therefore we will always consider
the proper moments Gp(r) = 〈∆up〉 throughout this paper. A trivial exception is the
case of transverse velocity differences that are symmetric by definition and for which
only even moments would be non-zero. The weak dependence on p of either the even-
or the odd-order residual functions fp(r) will be studied in detail in § 7.1.

These various functional forms for structure functions should be viewed as first
steps towards a finite-scale theory for turbulent scaling. Such a theory is expected to
provide scaling functions that encompass a significantly larger scaling range, as it will
include (part of) the viscous scales. In this respect the situation is similar to that of
critical phenomena. Only after finite-scale corrections were formulated, could precise
values for the critical exponents be extracted from experiments.

2.2. Consequences of the multifractal model

The multifractal model has a number of interesting consequences that are amenable
to experimental verification. Deviations from inertial-range scaling, Gp(r) ∼ rζ(p), due
to the influence of viscosity occur at distances r ≈ 30η. As the Reynolds number is not
yet unity at these scales, the interval [η, 30η] is called the intermediate viscous range.
It turns out that the multifractal model leads to a prediction of Gp(r) in this range
that is related to a quite common property of fractals (Frisch & Vergassola 1991;
Jensen, Paladin & Vulpiani 1991; and Wu et al. 1990). Scaling behaviour of natural
fractal objects does not extend to arbitrary small length scales. In general, there
exists a crossover length scale where fractal scaling stops and where a more trivial
scaling regime is entered that displays, for example, the continuity of the object at the
smallest scales. A multifractal exists of a whole collection of singularity strengths h
and the crossover can depend on h. This presence of many crossover lengths will here
be called multiscaling. A similar situation exists in turbulence. (Multi)fractal scaling
ceases at scales where the influence of viscosity starts to be felt. This crossover point
should depend on h as stronger singularities can survive to smaller scales before they
are smoothed by viscosity. Because structure functions of increasing order p probe
the singularities of increasing strength, the scaling behaviour of Gp(r) should extend
to smaller r as p increases.

The exact manner in which singularities are smoothed and the exact way in which
the scaling extends more and more to viscous scales as p increases is a still unresolved
question, but a crude model follows from equating the eddy turnover time r/v(r) to
the viscous momentum diffusion time r2/ν, where ν is the kinematic viscosity and v(r)
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is the velocity difference at scale r (Paladin & Vulpiani 1987). It then follows that for a
given singularity strength h there is a smallest distance rc to which scaling behaviour
can extend. Conversely, for a given distance r, there is an upper limit to h, hmax,
corresponding to the weakest singularity that can survive at r. We will briefly discuss
the derivation of hmax, which closely follows that of Frisch & Vergassola (1991). We
will then use it to compute a model Gp(r) and illustrate the influence of multiscaling.

The dimensionless relation between velocity differences v(r) at different scales r is

v(r) = v(L)
( r
L

)h
, (2.6)

where L is an external length scale, for example the integral scale. The argument
sketched here leads to (rc

L

)h+1

=
ν

Lv(L)
= Re−1, (2.7)

where ν is the kinematic viscosity. Using the relation rν/L = Re−3/4 between the
external scale L and the viscous scale rν , it follows that

rc

rν
= Re(3h−1)/(4h+4). (2.8)

Experimental evidence, as for example shown in figure 17, points to the strongest
singularity having a strength hmin ≈ 0.16 in which case (2.8) predicts a very weak
dependence of the cutoff scale on the Reynolds number, rc/rν ≈ Re−0.1. The conclusion
is that it will be difficult to see the dependence on Re in experiments that cannot
span a large dynamical range of Reynolds numbers.

The influence of multiscaling on the structure function follows from

Gp(r) =

∫ hmax(r)

hmin

dh
( r
L

)ph+3−D(h)

, (2.9)

where hmax(r) is given by

hmax(r) =
4

3

log (rν/L)

log (r/L)
− 1. (2.10)

Although the dependence on the Reynolds number would be difficult to observe in
laboratory-scale experiments, it should be possible to see the influence of multiscaling
on the form of the structure function at a fixed Reynolds number. This is illustrated
in figure 1 where Gp(r) as computed from (2.9) is shown for p = 2, 4, and 8.† The
(convex) function D(h) was taken from an experiment (by Legendre transforming
a measured structure function exponent ζ(p), with a few points at D′(h) < 0 taken
from Meneveau & Sreenivasan 1991), but the outcome of the computation does not
depend on the details of the assumed D(h).

For this calculation we have assumed L = 103 and rν = 30. We believe that these
are reasonable numbers for laboratory turbulence and it is seen in figure 1 that the
crossover distance shifts to smaller r as p increases. At the smallest r one expects the
turbulence field to be smooth and Gp(r) ∼ rp. This behaviour is of course lacking in
(2.9).

A second experimentally observable consequence of the multifractal model follows
from the intrinsically geometric view of turbulent fluctuations. The model assumes
that these fluctuations arise from interwoven sets of singularities. The probability of

† An asymptotic analysis for Re→ ∞ and l → 0, leading to an analytic form for Gp(r) has been
given by Frisch & Vergassola (1991).
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Figure 1. Multiscaling behaviour of structure functions: the scaling of structure functions extends
deeper into the intermediate viscous range as the order becomes larger. The structure function
Gp(r) has been computed from (2.9), (2.10) and assuming a polynomial function D(h) that is a fit

to measured data. The inertial-range slope of the plot of logGp(r)
1/p versus log r depends on p; the

scaling anomaly is comparable to that found experimentally.

encountering a particular singularity at scale r is determined by the dimension D(h)
of the set in which this singularity exists. In the case of our longitudinal structure
functions, velocity fluctuations are measured on a line that cuts through the turbulent
flow field. It is a simple observation that the intersections of lines in three dimensions
form an empty set.

A more precise statement about the geometry of intersections follows from the rule
that in three dimensions the dimension Ds(h) of the set of intersections of a line with
the set of singularities h is given by Ds(h) = −2 + D(h) (Mandelbrot 1990). In the
case that Ds(h) < 0, the chances of encountering a singularity of strength h decrease
with decreasing r, with the negative value of the dimension Ds signifying the manner
in which the simultaneous intersection of a ball with radius r with both the line and
the set of singularities becomes empty with r → 0. Because at D′(h) < 0 the smallest
value of D(h) corresponds to the smallest h, the value of hmin given by Ds(hmin) = 0 is
limiting. In the case of longitudinal measurements hLmin is determined by D(hLmin) = 2.
Conversely, a measurement of transverse velocity differences in a planar cut of the
turbulent field leads to the limiting value hTmin with D(hTmin) = 1. Thus one expects to
see stronger singularities in a transverse experiment. These results may be understood
intuitively by imagining stringed singularities as the carriers of the strongest events
in turbulence. The chances of detecting the associated exponents are bigger in an
experiment that cuts a plane than in one that cuts a line.

According to the simple intersection argument, the behaviour of ζ(p) for large p
of the multifractal model would be essentially different from that predicted by the
log-normal model. In the latter model ζ(p) has a maximum, after which the scaling
exponent bends down. In marked contrast, if a strongest detectable singularity exists,
the scaling exponent for large p is

ζL(p) = 1 + phLmin and ζT (p) = 2 + phTmin, (2.11)

for our longitudinal and transverse measurements, respectively.
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The question about negative dimensions in turbulence is an interesting one and has
been discussed by Chhabra & Sreenivasan (1991, 1992) and Molenaar, Herweijer &
van de Water (1995).

3. Flow configuration and instrumentation
A central point of our experiments has been the design of laboratory flow con-

figurations in which structure functions exhibit clear scaling behaviour that allows
unambiguous determination of a scaling exponent. As Reynolds numbers in the lab-
oratory are limited, our quest for ideal flows sometimes involved a compromise on
isotropy of turbulent velocity fluctuations.

For experiments on longitudinal structure functions we have used a single probe
whose time-dependent signal u(t) was interpreted as a space-dependent signal u(x)
with x = Ut. The interpretation of time variation as space variation is the subject of
Taylor’s frozen turbulence hypothesis that has been discussed by Antonia, Phan-Tien
& Chambers (1980). A key parameter that determines the applicabillity of Taylor’s
hypothesis is the relative size of the velocity fluctuations urms/U, with urms = 〈u2〉1/2.
For the transverse structure function we have used an array of probes which was
oriented perpendicularly to the mean flow direction and no recourse to Taylor’s
hypothesis need be made. Spatial distances are now physical distances between pairs
of probes. In our experiment the smallest distance is 3 mm, but microprobes that
are separated by 0.5 mm (which is slightly larger than η) are under construction. For
longitudinal measurements distances can be manipulated much more easily because
they are equivalent to time delays which can be readily tuned electronically.

In both cases, usage of a single hot wire can only approximately discriminate
between the two velocity components u, v perpendicular to the wire. The relative
contribution of the v-component to the signal is again proportional to urms/U. There
is, as yet, no good analysis available for the influence of both the Taylor hypothesis
and the v-contamination of the measured signal on high-order structure functions.
In the present study we have used flows where the ratio urms/U varies approximately
by a factor of 5, and the influence on high-order structure functions can be assessed
only indirectly.

Another very important aspect of our experiments has been the design of novel
instrumentation. This is detailed in § 3.2. In particular, we have strived for real-time
processing of turbulence data. A real-time approach obviates the necessity of storage
of the extremely voluminous primary data. These data consist of extremely long (many
hours) time series of velocity fluctuations sampled at approximately the Kolmogorov
frequency and measured at a single point or at several points simultaneously.

3.1. Flow configuration

The experiments were done in two distinct flows: grid-generated turbulent flow in a
closed wind tunnel and a turbulent flow that emanated from a jet. The flow conditions
are summarized in table 1. Several slightly different arrangements were used for the
grid flow, leading to slightly different characteristics; those have also been detailed in
table 1.

The wind tunnel has an experiment section of 8 m length with a 0.7 × 0.9m2

cross-section. Turbulence was generated by a grid at the beginning of the experiment
section. The grid consisted of a planar mesh of 0.1 m and 34% solidity. The isotropy
of the turbulent velocity fluctuations for a similar grid has been extensively studied
by Comte-Bellot & Corrsin (1966).



12 W. van de Water and J. A. Herweijer

1

0.1
10 102 103

r/g

G3

v
k
3

1

3

2102

10

Figure 2. Normalized third-order longitudinal structure functions measured in grid turbulence (2
of table 1). Curve 1 is measured with the probe on the centreline of the grid; here the Reynolds
number is smallest, Rλ = 1.9 × 102. For curves 2 and 3, the distance to the wind-tunnel boundary
is 0.17 m and 0.07 m, with Reynolds numbers Rλ = 2.6× 102 and Rλ = 5.3× 102, respectively. The
dashed line is |G3/v

3
k | = 4r/5η.

Configuration U (m s−1) urms (m s−1) Reλ η (m) L (m) lp/η U/fsη

1 12.6 0.68 3.4× 102 2.0× 10−4 0.095 1 3
2 11.0 0.94 5.3× 102 1.9× 10−4 0.17 1 3
3 12.2 1.05 6.0× 102 1.8× 10−4 0.13 1 3
4 10.4 0.80 4.5× 102 2.0× 10−4 0.17 1 2
5 11.4 0.95 5.6× 102 1.9× 10−4 0.15 1 3
6 12.5 2.27 8.1× 102 9.5× 10−5 0.075 2 6

Table 1. Characteristic parameters of the turbulent flows used. The mean velocity is U with
urms = 〈u2〉1/2 the r.m.s. size of the fluctuations. For the definition of the other characteristic

quantities the r.m.s. derivative velocity u̇rms ≡ 〈(du/dt)2〉1/2 is used. For the mean energy dissipation
ε the isotropic value is taken ε = 15 νu̇2

rms U
−2 with ν the kinematic viscosity. The Kolmogorov

scale is η = (ν3/ε)1/4 and the Taylor microscale is λ = Uurms/u̇rms with the associated Reynolds
number Reλ = λurms/ν. The integral length scale is defined in terms of the correlation function of
velocity fluctuations L =

∫ ∞
0
〈u(x)u(x + r)〉xdr/〈u2〉. The following flow conditions have been used:

(1) Turbulence 3 m behind a grid with mesh size 0.1 m and 0.34% solidity in a wind-tunnel with
cross-section 0.9 m vertical and 0.7 m horizontal. The probe was located in a region of non-zero
mean flow gradient, h = 0.19 m from the wind-tunnel boundary. (2) Same as (1) but the vertical
size of the wind-tunnel test section was reduced to 0.5 m and h = 0.07 m. (3) Same as (1) but the
mean flow gradient was increased by increasing the solidity of the grid mesh closest to the walls
to 0.7%. (4) Same as (1) but h = 0.07 m. (5) Same as (1) but h = 0.1 m. (6) Jet turbulence. The jet
flow emanated at 30 m s−1 from a 12 cm diameter jet. Data were taken 2.6 m downstream on the jet
centreline. In order to quantify the degree of averaging over small structures, we also quote the ratio
lp/η of the probe length lp and the Kolmogorov length η and the ratio U/fsη of the Kolmogorov
frequency, U/η and the sampling frequency fs.

In grid turbulence, isotropy is most closely approached at the centreline of the
grid. However, as here the decay of turbulence is strongest, this is not the optimal
location to study scaling phenomena. Figure 2 shows the third-order structure function
G3(r/η)/v3

k as a function of position. It appears that a scaling range is absent at the grid
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Figure 3. Comparison of second-order longitudinal and transverse structure function measured in
grid turbulence (5 of table 1). Open circles: transverse GT2 (r); dots: longitudinal GL2 (r). Dashed line:

transverse structure function G̃T2 (r) computed from the measured longitudinal GL2 (r) using (2.2). The

difference between G̃T2 (r) and GT2 (r) is a measure of the degree of anisotropy of the flow.

centreline, where the Taylor microscale Reynolds number is smallest (Reλ = 1.9×102).
The best scaling behaviour, the largest value of Reλ, and the best agreement with
the inertial range prediction G3(r/η)/v3

k = − 4
5
r/η is obtained at about 0.07 m from

the wall. Clearly, this close proximity to the wall entails the biggest compromise
to isotropy of the largest scales, although the measured prefactor C3 in the scaling
law G3(r) = −C3εr, C3 = 0.72, is quite close to the theoretical one, C3 = 4/5. The
influence of the large-scale flow structure on small-scale statistics has been discussed
by Kuznetsov, Praskovsky & Sabelnikov (1992), who show the variation of C3 and µ
with the degree of large-scale intermittency.

One test of isotropy is the measurement of C3; by also considering the viscous term
in (2.1), such a test can be extended to scales where viscosity is important (Antonia,
Chambers & Browne 1983). A much more direct check of isotropy, however, is the
comparison of transverse and longitudinal second-order structure functions through
the isotropy relation (2.2). This comparison is done in figure 3 in grid turbulence where
the sensor array is parallel with the wall at a distance h = 0.1 m. With the length of
the array 0.078 m and the width of the wind-tunnel test section 0.7 m, we assume the
flow to be homogeneous over the sensor array. Obviously, in figure 3 (2.2) is best
satisfied at the smallest distances r/η ≈ 30 where the velocity fluctuations are closest
to isotropic whereas marked discrepancies can be seen at the largest separations.

Other flow conditions show a closer approach to isotropy at larger scales r/η,
but the Reynolds number is smaller here and a scaling region where GL3 (r) ' r
is virtually absent. We believe that the compromise found between isotropy and a
large enough Reynolds number so that scaling can be seen is typical for laboratory
flows. We are not aware of other isotropy studies in relation to the measurement
of high-order structure functions. Still, this is an important issue because large-scale
anisotropy may affect scaling exponents. Transverse experiments have been restricted
to wind-tunnel flow because of the better temperature stability in the wind-tunnel.
As will be explained in § 3.2, this stability is of crucial importance for the calibration
reproducibility of a multi-probe array.
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Longitudinal structure functions have also been measured in jet turbulence. Here,
turbulence was generated by the efflux of a jet through a D = 12 cm diameter nozzle
in still air. The flow exited in open laboratory space and obstacles were at least
5.5 m downstream. Longitudinal turbulent velocity fluctuations were measured at a
distance x/D = 22 through processing of the time-dependent velocity signal. For
these experiments the Reynolds number is Reλ ≈ 103 and structure functions show a
clear and unambiguous scaling behaviour. This is demonstrated for the third-order
structure function in figure 4. However, because the velocity fluctuations are large
(urms/U ≈ 0.25), application of Taylor’s hypothesis is more questionable here than in
our longitudinal grid-turbulence experiments where urms/U ranges from 0.05 to 0.09.
In figure 4 the experimental C3 is close to the theoretical C3 = 4/5; however, in other
experiments larger deviations were seen.

Another setup that is commonly used for the study of turbulent scaling behaviour
is cylinder turbulence. For these experiments we have used an 11 cm diameter cylin-
der that was placed in our windtunnel. Velocity fluctuations were measured at a
downstream location x/D = 54, where x is the distance to the cylinder axis. In these
experiments, that were done with mean flow velocities up to 20 m s−1, we have not
been able to observe convincing scaling behaviour of G3.

3.2. Instrumentation

Constant-temperature hot-wire anemometry was used to measure the turbulent ve-
locity fluctuations. The velocity probes were made of dp = 2.5 µm diameter platina–
wolphram wire with a sensitive length of lp = 200 µm. The wire was stretched between
10 mm long, 0.5 mm base-diameter Nimonic 90 prongs that were separated by 3 mm.
In order to avoid flow-induced mechanical resonances of the probes, special care was
given to the construction and choice of materials. The prongs were mounted in thin
(3 mm diameter) ceramic tubes.

The effective length lp of the probes is in all our experiments of the order of the Kol-
mogorov length η. It should be noted, however, that our wires are relatively thick. This
results in relatively large end-conduction losses of the hot wire. It has been surmised
that in this case the frequency response is not flat due to the frequency dependence
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of end- conduction losses. This idea was tested by Bremhorst & Gilmore (1976) for
probes with lp/dp > 200. However, measured dynamical (frequency-dependent) cali-
bration curves did not significantly differ from a static calibration. We have performed
similar, but more precise dynamic calibrations and also failed to see an effect on our
probes (that have lp/dp ≈ 80).† Still, it is very well possible that even smaller values
of lp/dp would be detrimental for the frequency response of the probe.

We have noticed slight quantitive changes in the course of our experiments which
we attribute to probe artifacts that are not completely understood. For example,
in repetitions of the same jet experiment but with different probes we have found
significant variations in ζ(3) that ranged from 0.95 to 1.03. The probes that have
been used have been especially designed for this type of study. They necessarily are a
compromise among mechanical rigidity, calibration stability and accuracy, and further
progress needs be made to perfect them.

For the transverse measurements, initially a rake was used with five probes placed
such that their ten distances were optimally spaced on a logarithmic scale. By adding
three more probes symmetrically, nine distances come in pairs. Although eight probes
give 28 distances that could be distributed more evenly over the (log) r-axis, we have
chosen to cluster points in pairs. This allowed a check on statistical accuracy and
systematic errors.

A precise and stable calibration of the probes is crucial for transverse measurements
where, at a particular separation, we measure velocity differences with two different
probes. The probe output voltage is a strongly nonlinear function of the wind velocity.
A slight change of the probe characteristics, caused for example by a drift of the
ambient temperature, results in a drift of the working point on the calibration curve.
The result is an apparent change of the mean velocity and an apparent change of the
probe sensitivity. It is easy to correct for the first effect when analysing results, but
accounting for the second effect is impossible in a real-time setup. For longitudinal
measurements with a single probe, a change of the probe sensitivity results in a slight
apparent shift of the inertial range, However, for transverse measurements such a
change results in a catastrophic asymmetry of measured probability density functions.
A measure for the quality of transverse experiments, therefore, is the symmetry of
the measured PDF under reflection of the velocity difference axis. Therefore, we will
always show PT (∆u) and PT (−∆u) superposed on a single graph. This symmetry test
is necessary but not sufficient and further confidence in the results must be gained
from repeated experiments.

In order to cure the calibration problem, we have adopted a strict procedure in
which calibration curves are registered immediately prior to experimental runs. For
the transverse measurements this procedure is completely automated with help of
a computer that places a calibration nozzle in front of each of the probes and
automatically registers a calibration curve. Calibration data were fitted with fourth-
order polynomials which were used to generate 12× 12 bit calibration tables.

The probes were instrumented with locally manufactured computer controlled
anemometers and adjustable amplifiers. The signals were passed through 4-pole
constant-phase anti-aliasing filters and digitized with 12 bits. The conversion of
measured voltages to wind velocities was done using 12 × 12 bit lookup tables. The

† Bremhorst & Gilmore (1976) measured dynamic calibration curves by shaking the probe. In
our experiments the overheat ratio was periodically varied. By phase-synchronous averaging, very
accurate dynamic calibration curves can be measured. No difference with static calibration curves
was found.
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Figure 5. Power spectrum of turbulent velocity fluctuations measured in jet turbulence (6 of table
1). The vertical axis spans the entire dynamical range of a 12-bit ADC. The dashed line is a fit to
the spectrum; it has slope −1.72.

Kolmogorov length η is the smallest length scale in the flow, and correspondingly fk =
U/η is the largest frequency in the turbulent signal. For measuring structure functions,
the anti-aliasing filter cutoff frequency fc and the sampling frequency fs should ideally
be set at fk and 2fk , respectively. As fk increases, for example with increasing Reλ,
both the physical size and the magnitude of the velocity difference of the smallest
eddies in the turbulent flow decrease. The smallest detectable size is determined by
the size of the probe lp and by fc. The smallest detectable velocity fluctuation is
determined by the dynamical range of the ADC that must accommodate both the
largest and the smallest velocity fluctuations of the flow. In our jet experiments we
have reached the maximum dynamical range of the 12 bits ADC. Figure 5 shows
a power spectrum of velocity fluctuations in a jet with Reλ ≈ 8 × 102 and fk ≈ 50
kHz. The sampling frequency is fs = 45 kHz, the filter cutoff fc = fs/2, and the
span of the vertical axis is approximately 224. For this experiment, an increase of the
sampling frequency appears useless without an increase of the number of bits in the
digitization of the velocity signal. This would, incidentally, only be worthwhile with a
simultaneous redesign of the anemometry circuitry. A higher precision is important
for smaller velocity differences. As our main interest is the statistics of large velocity
differences, an increase of the discretization accuracy does not seem urgent. We finally
note that the spectrum of figure 5 is without spurious peaks. It reflects a concentrated
effort to carefully shield noise sources and suppress mechanical resonances.

Statistically accurate measurements of high-order structure functions need long
integration times. In a conventional approach to turbulence data processing, long
integration times imply the registration and storage of long times series of measured
velocities. This inevitably leads to storage problems and long processing times before
the result of the experiment (PDFs, structure functions) becomes available.

In all of our experiments, we employ real-time processing of velocity differences. For
the longitudinal experiments we have built a special digital device that can measure
high-order structure functions in real time through accumulated probability density
functions of ∆u(r). Not only has this significantly eased the statistics problem, but the
absence of stored time series and the immediate availability of the structure function
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has allowed systematic experimentation with the flow conditions (Herweijer et al.
1994). The maximum number of velocity samples that we have taken is 1.5 × 109,
which is two orders of magnitude larger than in Anselmet et al. (1984).

The ‘structurator’ accepts 12-bit anemometer voltages that are converted to wind
velocities using a lookup table and fed into a long (1024 positions) circular buffer.
Velocity diferences u(t) − u(t + τi) are computed at discrete values of τi which are
spaced exponentially on [τs, 1024τs], where τs is the sample time. The version of the
structurator used operates in real time at a sampling rate of 20 kHz (τs = 5×10−5s).†

For the transverse experiments we have used a real-time instrumentation computer
and coded crucial parts of the acquisition program in machine language. An effective
throughput of about 5 kHz (for eight hot wires) was achieved, which is a factor of
four smaller than the optimal acquisition speed that is determined by fk .

4. Probability density functions
In an experiment on the small-scale structure of turbulence one would collect prob-

ability density functions (PDFs) of velocity differences and compute their moments
afterwards. Scaling arguments apply directly to the structure functions but it is of
interest to study the intermediate PDFs. First we will compare measured longitudinal
and transverse probability density functions. We will then analyse these experimental
PDFs in terms of an intermittency model. Finally we will discuss a simple but ade-
quate functional form for the tails of the PDF which can be used for a better control
of the statistical convergence of high-order moments.

4.1. Longitudinal and transverse probability density functions

Figure 6 compares transverse PT (∆u) and longitudinal PL(∆u) probability density
functions at several separations r. It is a striking observation that for separations that
are approximately in the inertial range (r/η ∼< 200) the negative velocity difference

tail of the (skewed) PL coincides with the tails of the transverse PT . As has been
emphasized in § 3.2 the transverse PDFs PT (∆u) have been measured using two sep-
arate velocity probes and the accuracy of the probe calibration is crucial. Calibration
and inhomogeneity problems may show in an asymmetry of the PDF and we always
superimpose PT (∆u) and PT (−∆u). In a few cases the asymmetry just exceeds the
noise level of the PDFs.

Inspection of the probability density functions shows that the probability of finding
a large negative velocity difference −|∆u| in a longitudinal measurement is 3 to 4
times larger than finding the companion positive |∆u|; consequently the value of
the longitudinal velocity moments is mainly determined by the negative tails of the
probability density function PL(∆u). This is nicely demonstrated in figure 7 which
shows FLr (p) = |〈∆up(r)〉|1/p as a function of p for two values of r that correspond to
the bounds of the inertial range. For p ∼> 8, FLr (p) at even values of p can to a good

approximation be interpolated between FLr (p− 1) and FLr (p+ 1) at neighbouring odd
values, and vice versa. The scaling of GLp , therefore, is for large p mainly determined
by ∆u < 0. The comparison between longitudinal and transverse PDFs in figure
6 is put into another perspective in figure 7 through contrasting longitudinal and
transverse Fr . As is already suggested in figure 6, the difference between longitudinal

† A software version running at 100 kHz has now been implemented using a standard Digital
Signal Processing chip.
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Figure 6. Transverse and longitudinal probability density functions of velocity differences measured
in grid turbulence (5 of table 1). Dots: superposition of transverse PT

r (∆u) and PT
r (−∆u), lines:

longitudinal PL
r (∆u) probability density functions. The separations are (a) r/η = 9 for PL

r and PT
r ;

(b) 36 for PL
r and PT

r ; (c) 150 for PL
r and 135 for PT

r ; (d) 260 for PL
r and 250 for PT

r . The probability
density functions have been normalized such that

∫
P (y)dy = 1,

∫
yP (y)dy = 0 and

∫
y2P (y)dy = 1.

The r.m.s. velocity difference du is defined as du ≡ 〈(u(x+ r)− u(x))2〉1/2x . An absolute scale for the
transverse velocity difference has been given for plot (a).

and transverse moments grows with decreasing separation. We will show in § 7 that
this is consistent with a stronger anomaly of ζT (p).

In all the PDFs shown, we have normalized the velocity scale at a particu-
lar separation r by the corresponding root-mean-square velocity difference du ≡
〈[u(x+ r)− u(x)]2〉1/2. The velocity scales duT,L = (GT,L2 )1/2 of PT and PL, respec-
tively, are related through the isotropy relation (2.2). This relation predicts that for
nominal inertial-range scaling, G2(r) ' r2/3, the transverse duT is a factor (4/3)1/2

larger than the longitudinal duL, but the ratio grows to 21/2 as r reaches the vis-
cous scales. On an absolute velocity scale, therefore, transverse velocity differences
can become very large. In figure 6(a) we have provided an absolute velocity scale
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Figure 7. Structure function of grid turbulence (4 in table 1). Shown is FL,Tr (p) = |〈∆u(r)p〉|1/p as
a function of the order p at two separations inside the inertial range: r/η = 33 (open circles) and
r/η = 440 and 410 (closed dots) for the longitudinal and transverse case, respectively. Dashed lines
are FTr , full lines FLr . The normalization is FL,Tr (2) = 1. The divergence with increasing p of the
curves corresponding to the two separations is an expression of anomalous scaling of Gp(r).

for the transverse PT
r (∆u) at r/η ≈ 9. For this experiment the mean velocity was

U = 13 m s−1, with the r.m.s. velocity fluctuation a mere 3.5% (urms = 0.46 m s−1).
Still, during an experimental run that effectively lasted approximately 100 minutes,
we have detected velocity differences as large as 4 m s−1 across r = 3 mm.

Although the size of the transverse velocity differences is surprising, it could have
been anticipated on the basis of the longitudinal probability density functions. We
have demonstrated that the ∆u < 0 tail of the normalized longitudinal and transverse
PDFs approximately coincide, so that the transverse excusions are only a factor 21/2

(that is the ratio duT/duL) larger than the longitudinal ones. We emphasize that it is
not the absolute scale of the velocity differences that is of prime interest in scaling
arguments, but the way these velocity differences increase with increasing separation.
This dependence determines the exponents ζ(p) and reflects the strengths of the
singularities involved. Not only is the absolute scale of transverse velocity differences
larger, but, as we will show in § 7.3, transverse velocity differences also correspond to
significantly stronger singularities.

4.2. Models for probability probability density functions

Intermittency models, such as those summarized in § 2, give also rise to models for
the probability density function of velocity differences. Roughly, these models express
that the probability distribution of velocity differences at scale r is inherited from
that at large scales through a self-similar refinement process. The large-scale PDF
PL is nominally Gaussian. At scale r < L, the resulting PDF Pr is a superposition
of Gaussians that have a range of widths. Each of those Gaussians is thought to be
spawned from PL through a cascade process and, accordingly, the range of widths
increases as r decreases. The distribution over those widths can itself be a Gaussian
with width say λ (Castaing et al. 1990; Chabaud et al. 1994)

Pr(x) =

∫
1

λ

1

(2π)1/2
exp

(
− ln2 σ

2λ2

)
1

σ
PL

(
x

σ

)
d ln σ. (4.1)
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Figure 8. Comparison of probability density functions measured in grid turbulence (5 in table
1) with a multifractal model. (a) Dots: transverse probability density PT

r (∆u) and PT
r (−∆u) at

r/η = 250. Dashed line: fit of (4.1) with λ = 0.258. (b) Dots: longitudinal probability density PL
r (∆u)

at r/η = 260. Dashed line: fit of (4.1) with λ = 0.212. Skewness was incorporated in PL as in
Chabaud et al. (1994).

The parameter λ is an adjustable parameter whose value should increase with decreas-
ing separation r. In the multifractal model the width σ of PL depends on the number
of cascade steps L/r and the singularity strength h as σ ∼ (L/r)h. The probability
density function of widths is then given by the probability (r/L)3−D(h) of encountering
in three dimensions a singularity h that resides in a set with dimension D(h).

Equation (4.1) can then be rewritten as

Pr(x) ∼
∫ (

r

L

)3−D(h)

PL(x
[
r/L
]−h

)dh, (4.2)

and it is seen that the Gaussian distribution over widths in (4.1) is the approximation
of r3−D(h) near its quadratic maximum. Therefore, λ2(r) = ln(r/L)/D′′(h̃), where D′′(h̃)
is the second derivative at the point h̃ where D(h) reaches a maximum. Surprisingly,
Chabaud et al. (1994) found that λ2(r) ∼ r−β , which is not compatible with scaling
behaviour of the moments Gp(r). A representation of the PDF as a sum of Gaussians
was earlier proposed by Benzi et al. (1991) and Kailasnath, Sreenivasan & Stolovitsky
(1992); the difference with (4.1) is that the PDF is here a discrete sum over (binary)
cascade steps.

The dependence of λ on r is of interest, but the primary question is if this model
can be used to adequately represent PDFs. Figure 8 shows the result of a fit of (4.1)
to measured longitudinal and transverse PDFs at approximately the same value of
r/η in the inertial range. The value of the width parameter λ was determined with a
careful least-squares procedure (see § 6). From results that are not shown it appears
that for small distances r/η ∼< 30, both longitudinal and transverse PDFs can be
represented well with help of (4.1). However, discrepancies grow as r increases. This
is illustrated in figure 8 for r/η = 250. The discrepancy is significant for the tails of
the transverse PT

r (∆u), and, consistently, for the negative ∆u tail of the longitudinal
PL
r (∆u). We also point out that the value of λ differs significantly for the two cases.

The conclusion is that measuring intermittency parameters through fitting models
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Figure 9. The variation of a large-order moment (G19(r)) in repeated runs of a jet experiment (6

in table 1). Shown is the quantity G
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19 (r) ≡ |〈∆u19〉|1/19 × sign〈∆u19〉 for 10 subsequent runs, each

lasting L/U ≈ 105 integral time scales (3× 107 samples).

like (4.1) to PDFs cannot yet be a substitute for the measurement of scaling through
high-order moments. It is especially at large p that discrepancies such as shown in
figure 8 become important.

The tails of the probability density function evolve from exponential at small sepa-
rations r to Gaussian at large separations where differences of essentially uncorrelated
velocities are taken. This observation suggests a simple form for the tails of the PDF
in terms of stretched exponentials (Kailasnath et al. 1992)

P (∆u) = a exp (−α|∆u|β), (4.3)

where the parameters a, α and β depend on the separation r and on the sign of ∆u (they
can be different for the left and right tail of PL(∆u)). At small separations r, β ≈ 1
and P (∆u) is close to exponential; at large separations β ≈ 2 and P (∆u) becomes
Gaussian. Contrary to the intermittency model of (4.2), the stretched-exponential
description is not based on first principles and should be merely viewed as a convenient
parametrization. In § 6 we will investigate the adequacy of this description and show
how to determine its parameters. We will then use it to achieve a better control over
the statistical convergence of high-order moments.

5. Statistical convergence of moments
The structure functions follow from the probability density functions as

Gp(r) =

∫ ∞
−∞
Pr(x)xpdx, (5.1)

where in practice the integration is replaced by a sum over non-empty bins of
a discretized experimental Pr(∆u) and the integration bounds are replaced by the
largest and smallest ∆u that occur in an experimental run.

Figure 9 illustrates the convergence problem by showing
(
GL19(r)

)1/19≡|〈(∆u)19〉|1/19×
sign〈∆u19〉 for 10 subsequent runs of a jet experiment; each run is an average over 105
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integral scales (3 × 107 samples). Because of the skewness of longitudinal PDFs, the
moment shown should be negative, but it is seen that in some runs at some separations,
notably in the inertial range, GL19(r) almost perfectly reverses sign. Clearly, this large-
order moment has not statistically converged at 3×107 samples and is determined by
single events. Consequently, the integrand in GL19(r) =

∫
PL
r (x)x19dx has not returned

to zero for the largest measured velocity differences.
A study of the convergence problem can be done in two ways. In § 5.1 we will use

the correlation structure of moments in order to arrive at an estimate of the error in
measured moments as a function of the integration time. In § 5.2 the largest moment
Gp that is statistically meaningful for a given integration time will be estimated from
the known statistics of measured PDFs.

5.1. Using the correlation structure

The accuracy of measured moments increases with the integration time T . The key
point of an error estimate is that T must be expressed in terms of the correlation
time of these moments. Assume that the true ensemble (or long-time) mean 〈∆up〉 is
estimated by an average 〈∆up〉T over a finite integration time T . It is then possible
to derive a simple expression for the root-mean-square error in 〈∆up〉T (Tennekes &
Lumley 1972). This expression holds irrespective of the probability density function
of ∆u:

〈[〈∆up〉T − 〈∆up〉]2〉1/2 ≈ ( Ip
T

)1/2

2〈[∆up(t′)− 〈∆up〉]2〉1/2t′ , (5.2)

where ∆up(t) is the velocity difference over a distance r at time t and raised to the
power p. It is clearly the ratio of T and the integral time Ip that is of relevance,

Ip =

∫ ∞
0

ρp(τ)dτ, (5.3)

with ρp(τ) the time-correlation function of ∆up:

ρp(τ) =
〈(∆up(t′)− 〈∆up〉) (∆up(t′ − τ)− 〈∆up〉)〉t′

〈(∆up(t′)− 〈∆up〉)2〉t′
. (5.4)

For p = 1, the integral time Ip=1 gauges the integration time needed for the average
velocity difference to converge to zero. In this case all necessary information can be
obtained from the second-order structure function. In order to estimate the error in
the moment of order p, knowledge about the moment of order 2p is needed. Because
such an estimate needs the moment G2pmax

, the method sketched here cannot be used
to compute the largest meaningful moment Gpmax

that can be measured for a given
integration time. Nevertheless, it is useful and instructive to measure the expected
error for a few low- order moments. The correlation functions of longitudinal velocity
differences, (5.4), and associated integral times, (5.3), were computed from a stored
time series (of length 105L) of velocity measurements in jet turbulence; time τ and
the spatial separation δ are related through Taylor’s hypothesis, δ = Uτ.

The predicted error is shown in figure 10. Due to intermittency, the tails of the
PDFs become wider with decreasing separation. Therefore, the error in high-order
moments should increase as the separation r decreases and the effect of intermittency
grows stronger. This trend is opposite to that for low-order odd moments that gauge
the deviation from Gaussianity. At large separations, the PDF is close to Gaussian,
and the error should increase with increasing separation. The crossover between these
opposing trends is clearly seen in figure 10. The estimated error increases rapidly with
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Figure 10. Error of structure function 〈(〈∆up〉T − 〈∆up〉)2〉1/2 (5.2) as a function of the order p. It
was computed from a stored time series of velocities in jet turbulence (6 in table 1). The length of
the time series is T = 1.4× 105L/U.

increasing p and is largest for the odd moments. This result also illustrates that the
statistical error of low-order moments at the integration times used is small and we
conclude that the main source of uncertainty is systematic errors that are for example
associated with the non-ideal realization of homogeneous and isotropic turbulence.

5.2. Using the statistical error of the PDF

A simple and practical estimate of the convergence time starts with the probability
density functions of velocity differences. The PDF measures the number of times n that
a given velocity difference ∆u has occurred. A long experimental run contains a very
large number of uncorrelated events and it is reasonable to assume that the probability
distribution of n, P(n), is that of a Poisson process with P(n) = 〈n〉n exp(−〈n〉)/n!. The
average number of times that a given velocity difference ∆u has occurred in N velocity
samples is 〈n〉 = NP (∆u) and the standard deviation of n is 〈(n − 〈n〉)2〉1/2 = 〈n〉1/2.
For large n, P(n) becomes a Gaussian.

These statistical properties are demonstrated for measured probability density

functions by subtracting the smooth part P̂ of a measured PDF such that its
fluctuations remain. The smooth part was found by piecemeal fitting the log of
P (∆u) with a second-order polynomial. This procedure does not assume a particular
functional form for P (∆u) and works well for the tails of the probability density
function when the noise has not yet grown large. The result is shown on figure

11(a) where we plot the normalized δP = N1/2(P − P̂ )/P 1/2 as a function of ∆u. In
the case of Poisson statistics, the quantity δP should be distributed according to a
Gaussian with unit variance. Our procedure adequately approximates the smooth part
for 2 < |∆u/du| < 6 and from the uniform width of the noise band in this interval
we conclude that the fluctuations of the PDF are indeed that of a Poisson process.
A histogram of the fluctuations for 2 < |∆u/du| < 6 is shown on a logarithmic scale
in figure 11(b). The approximate Gaussian character is evident and our assumption
of a Poisson process of independent samples is further corroborated by the measured
value of the standard deviation 〈δP 2〉1/2 ≈ 1.03 that only slightly differs from unity.
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Figure 11. The fluctuations of a probability density function measured at separation r/η = 190 in
jet turbulence (6 in table 1) using 3 × 108 samples. (a) The residue after subtracting the smooth

part P̂ of the measured PDF. The determination of P̂ fails for |∆u/du| ∼< 2, but works well for the

tails of the PDF. (b) Dots: histogram of the fluctuations in the tails of the PDF in (a). Dashed line:
Gaussian fit. The standard deviation of the measured histogram is 〈(δP )2〉 = 1.03.

It is now possible to derive an expression for the convergence time of high-order
moments. The argument is that a moment has converged if the integrand |(∆u)pP (∆u)|
has well-defined maxima. For increasing p these maxima shift to larger values of |∆u|
where the noise on a measured P (∆u) becomes larger. At a given value of p, pmax, it
becomes impossible to decide the presence of maxima.

Let us for our present purpose assume a symmetric function P (x) whose tails can be
well approximated using stretched exponentials, P (x) = a exp

(−αxβ). The integrand

xpP (x) = axp exp
(−αxβ) reaches a maximum at

x1 =

(
p

αβ

)1/β

. (5.5)
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The relative Poisson noise contribution to the probability density function is
N−1/2P (x)1/2. Accordingly, the noise contribution to the integrand is
N−1/2xpP (x)1/2 = N−1/2a1/2xp exp

(−αxβ/2). It reaches a maximum at

x2 =

(
2p

αβ

)1/β

. (5.6)

We take the largest meaningful pmax as the value of p where the size of the noise
contribution at x2 equals the integrand at x1:

pmax ≈ 1
2
β log2 N, (5.7)

where N is the total number of velocity samples, and where we have assumed that
a = O(1). The results of figure 11 were obtained with 3×108 velocity samples. For this
probability density function (5.7) with β = 1 predicts pmax ≈ 14, which we take as an
upper limit. This value approximately agrees with that following from the fluctuations
of Gp(r) that were observed in repeated experimental runs, each containing 3 × 108

samples. From (5.7) it is seen that the more problematic convergence of high-order
moments at small distances is due to the small value of β here. Incidentally, statistical
convergence of moments p = 20 can only be obtained after taking a number of
samples that is a factor of 4 × 103 larger (at β = 1). Peinke et al. (1994) also
emphasize the exponential increase of N with pmax.

6. Extrapolating high-order moments
If the tails of the probability density function can indeed be well represented by

stretched exponentials, the convergence of high-order moments could be significantly
improved. We will now carefully test this idea by fitting the tails of the probability
density function by stretched exponentials and using this functional form to compute
the contribution of the tails of Pr(∆u) to its high-order moments. A key point is an
evaluation of the goodness of fit, which is possible because the (Poissonian) nature
of the fluctuations of measured PDF tails is known. In the case of perfect fits, all
interesting physics would be contained in a number of velocity samples that is large
enough to dependably estimate the parameters of the stretched exponentials and
nothing more could be learnt from longer averages.

The computation of structure functions by stretched-exponential extrapolation
was done in the following way. The contribution of left (∆u 6 −∆u0) and right
tails (∆u > ∆u0) of the measured probability density function to the moments was
computed from the parameters of a stretched exponential fit P (x) = a exp

(−α|x|β).
The parameters a, α and β were determined from a least-squares procedure for left and
right tails separately. The contribution of the central [−∆u0,∆u0] part was computed
by directly integrating the measured PDF.

Once the constants a, α and β are determined, the contribution of the tail of the
PDF to the order-p moment follows simply from∫ ∞

∆u0

axpe−αx
β

dx =
a

β
α−(p+1)/βΓ

(
(p+ 1)/β, α(∆u0)

β
)
, (6.1)

with the incomplete Gamma function Γ (a, x) defined as

Γ (a, x) =

∫ ∞
x

ta−1e−tdt. (6.2)
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Figure 12. Dots: probability density function of longitudinal velocity differences in jet turbulence (6
in table 1) with r/η = 190. Full line: fit of stretched exponential a exp [−α|∆u|β] over |∆u/du| > 1.5.
For the left side ∆u/du < −1.5, β = 1.37, for the right side, ∆u/du > 1.5, β = 1.26.

It must be emphasized that this extrapolation procedure cannot be a true substitute
for long integration times in the experiment. The finite statistical accuracy of the tails
of the PDF that results in large errors in directly determined high-order moments,
now leads to errors in the parameters found for the stretched exponential. It is well
known that determining the parameters of an exponential function in a least-squares
fit of data with noise is an ill-conditioned problem (McWhirter & Pike 1978). This ill
conditioning magnifies the noise-induced error in a, α and β. Moreover, it may well
be posible that the tails of the PDF have a more complicated form than stretched
exponential. We will find below that this is probably the case for the positive velocity
part of longitudinal PDFs.

For the determination of the parameters of the stretched-exponential description
we make explicit usage of the Poisson statistics of the tails of probability density
functions. In our experiment, measured PDFs consist of events that are collected in
discrete bins ∆ui. Let then ni be the measured number of events in the bin with index
i. For either the left or right tail of the PDF the parameters a, α and β follow from
minimizing

χ2 =
1

M − 4

M∑
i=1

[
ni − a exp(−α|∆ui|β)

]2
ni

, (6.3)

where M is the number of discrete velocity bins in the part of the PDF that is
parametrized. If a stretched-exponential description is adequate, the minimum of χ2

should be χ2 = 1. An example of a stretched-exponential fit to the tails of a PDF is
shown in figure 12. The dependence of χ2 on r/η is shown in figure 13 for a total
number of samples N = 108 and N = 3 × 108. It turns out that for longitudinal
measurements χ2 is close to 1 for the negative velocity tails, which demonstrates that
stretched exponentials are a good description here. For the positive ∆u tails, χ2 is
larger and increases with increasing integration time of the experiment.

In these fits, the tail of the PDF was defined to be |∆u| > ∆u0 with ∆u0/du = 1.5
for r/η > 30 and rising to ∆u0/du = 2.5 at the smallest measured separation. Of
course, better fits and smaller values of χ2 may be obtained for larger ∆u0, but the
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Figure 13. Full lines: value of χ2 for stretched-exponential fits of PDFs for ∆u < −∆u0; dashed
lines: χ2 as a function of r/η for ∆u > ∆u0. Dots: total number of samples N = 1×108, open circles:
N = 3 × 108 (jet turbulence, 6 in table 1). For positive ∆u the PDF appears to differ significantly
from a stretched exponential.

trend of figure 13 strongly suggests that a stretched exponential description is merely
approximate for ∆u > 0. Transverse probability density functions are symmetric and
χ2 is always close to 1.

In figure 14 a 19th-order structure function that was computed by direct integration
of measured probability density functions is compared to one that was obtained by
extrapolating the tails of the same probability density functions. From this and other
data it appears that for large p, the extrapolated Gp at small values of r/η is typically
smaller than the directly computed Gp. At large separations, when the stretching
exponent β approaches 2 and the PDFs turn Gaussian, both direct and extrapolated
GLp (r) agree well.

The extrapolated G19 has much less noise and now displays unambiguous scaling
behaviour. The scaling behaviour of very high-order moments that are completely
determined by the stretched-exponential extrapolation is caused by a highly non-trivial
dependence of the parameters a, α and β on the separation r.

Although a stretched-exponential parametrization can only be approximate for the
positive velocity part of longitudinal PDFs, the corresponding contribution to high-
order moments is much smaller than that of the negative side of PL(∆u) and we expect
the resulting error on the extrapolated G19 to be small. Obviously, the extrapolation
procedure needs be reconsidered in experiments where a much larger number of
velocity samples is taken and deviations from stretched-exponential behaviour for
∆u > 0 become important. Noullez et al. (1997) have argued that, loosely, the velocity-
difference PDF can never cross the single-point-velocity PDF Pu. As the latter has
approximate Gaussian tails, a velocity-difference PDF with stretched exponent β < 2
will asymptotically cross Pu. Therefore, these values of β cannot hold asymptotically.
We have estimated that this would occur at a number of samples that is 6 to 8 orders
of magnitude larger than currently used.

The directly measured moment has oscillations that are absent in the moment
that was computed using the extrapolation of the tails. We have found that these
oscillations change appearance during a run, and can disappear when integrating
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Figure 14. Dots: longitudinal structure function |G19(r)|1/19 as computed directly from measured

PDFs; open circles |G19(r)|1/19 as computed from a stretched-exponential extrapolation from mea-
sured PDFs. After extrapolation the structure function shows clear scaling behaviour. The measured
PDF is based on 3 × 108 samples. In integral scales L the integration time is T = 2.5 × 106L/U.
(Jet turbulence, 6 in table 1.)
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Figure 15. Full line: longitudinal structure function |G15(r)|1/15 as computed directly from measured
PDFs that were based on 108 velocity samples. Dashed line: the same structure function, but after
1.5× 109 samples. In integral scales L the latter integration time is T = 4.7× 106L/U. (Experiment
1 in table 1.)

over a long time. This is illustrated in figure 15 where we show G15 after integrating
over 108 and after approximately 109 samples. The fact that these oscillations also
disappear with a better control of the statistical convergence of high-order moments
through stretched-exponential extrapolation makes us strongly believe that they are
due to statistical fluctuations. Similar oscillations have been noticed by Anselmet et
al. (1984) and have been interpreted in terms of an intrinsic property of fractal sets
by Smith, Fournier & Spiegel (1986). This is at variance with our interpretation. In
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Figure 16. Dots: longitudinal structure functions of order 3, 9, and 15 measured in jet turbulence
(6 in table 1). The total number of velocity samples N is 3 × 108 (in integral scales L the

integration time is T = 2.5 × 106L/U). Dashed lines: fits of ideal scaling behaviour Gp(r) ∼ rζ
L(p)

with ζL(p)/p = 0.32, 0.27, and 0.23, for p = 3, 9 and 15, respectively. The structure functions are
computed by extrapolating the tails of measured PDFs using stretched exponentials.

this respect it was shown in van de Water & Schram (1989) that, even for simple
model multifractal sets, such fractal oscillations almost never survive averaging.

7. Structure functions
7.1. Longitudinal

A central piece of information on the small-scale motion in turbulence is the structure
function. We will always present it in the form |Gp(r)|1/p, that has the dimension of
velocity. Figure 16 shows a typical result for structure functions of order 3, 9, and
15 that were measured in jet turbulence. The scaling of the curves in figure 16 is
indicated and the inertial range appears to be r/η ∈ [30, 1000]. We recall that in the
case of Kolmogorov scaling, the slope of these curves would all be 1/3. Clearly, the
curves for p > 3 in figure 16 exhibit anomalous scaling because their slope decreases
with increasing p. For the structure functions shown, the method of extrapolation
of PDFs via stretched exponentials was used. Directly measured structure functions
also allow the determination of scaling exponents, but the noise of the high-order
moments is larger. The improvement of low-order moments (p 6 8) through stretched-
exponential extrapolation is not perceptible, but it becomes appreciable for the high-
order moments.

In our experiments, an important criterion for selecting experimental configurations
has been the requirement that G3(r) exhibit clear scaling behaviour which allows an
unambiguous determination of the scaling exponent ζ(3). Finding the value of ζ(p)
was done by fitting a straight line to G3(r) in a log-log plot and adjusting the interval
r/η ∈ [l1, l2] such as to optimize the fit. The same experimental inertial range [l1, l2]
was used in the least-squares procedure for determining ζ(p) at other values of p.

It was found that the measured values of ζ(3) differed slightly but significantly
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Figure 17. (a) Open circles: scaling exponents ζL(p)/p of longitudinal structure functions that were
measured in jet and grid turbulence (2, 6 in table 1). The lines represent the prediction of several
models for ζ(p). 1: Kolmogorov’s prediction ζ(p) = p/3; 2: Log-normal model with µ = 0.2; 3:
Beta model with D = 3− µ = 2.8; 4: random Beta model; 5: prediction by She & Leveque (1994);
6: prediction given by a geometric constraint of the multifractal model, ζ(p) = 1 + hmin/p, with
hmin = 0.16. (b) Open circles: scaling exponents of longitudinal structure functions. Same as (a),
but now structure functions are computed by extrapolating the tails of the PDFs using stretched
exponentials. Shown are the results of experiments in jet and grid turbulence (2, 4, 6 in table 1).
The log-normal and Beta models are now computed with µ = 0.17 and D = 3− µ = 2.83.

from unity (they ranged from 0.96 to 1.03). We have normalized measured ζ(p) by

dividing it by ζ(3), so that the normalized ζ̃(3) is now trivially 1.
First we have analysed experiments without extrapolating the tails of PDFs. Figure

17(a) shows the (normalized) scaling exponents ζ̃(p)/p for two experiments that
allowed direct measurement of ζ(p) at large p. It shows the result in a way that
most clearly reveals the deviation from Kolmogorov’s prediction ζ(p)/p = 1/3. In
order to assess the influence of the statistical convergence of measured probability
density functions, we have repeated the computation of the structure functions by
extrapolating the tails of the PDF using stretched exponentials. This allows the
unambiguous determination of ζ(p) at large p in a larger set of experiments and
the results are shown on figure 17(b). For low-order moments the results of the
corresponding data in figures 17(a) and 17(b) agree, but for larger p the deviation
from Kolmogorov scaling ζ(p)/p = 1/3 becomes smaller when correcting for finite
sample size statistics through stretched exponentials. The Poisson character of the
statistical fluctuation of measured PDFs leads to an overestimate of the probability
of the strongest events with the largest velocity differences. Because this overestimate
is more severe at the small separations, where the probability density functions have
wider tails, one may argue that this leads to an overestimate at the smallest separations,
and thus to an overestimate of the scaling anomaly of high-order moments. This
speculation seems to be supported by a comparison of figures 17(a) and 17(b).

In figure 17 it is seen that ζ̃L(p) for p = 2, 3, 4 (and 5) does not follow a smooth
curve and displays an apparent asymmetry between even and odd exponents. Let us
for convenience define Aζ(p) = [ζL(p− 1) + ζL(p+ 1)]/2− ζL(p) as a measure for this
asymmetry. In § 2 it was argued that the existence of a substantial Aζ(3) would be
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caused by forcing effects that are difficult to avoid in laboratory turbulent flows. We
do not believe that the asymmetry Aζ(3) in figure 17 is due to this finite-size effect
as we have found slightly different values of Aζ(3), even in repetitions of the same
experiment under slightly different conditions. We conjecture that this difference is
due to slightly different dynamic characteristics of the hot-wire probe that are not
completely understood. In fact, the data that were selected in figure 17(a) have the
smallest asymmetry Aζ(3) between odd and even exponents.

In other experiments in a turbulent boundary layer at low Reλ (Reλ < 200) that
are not further discussed here, the asymmetry persists for large p and the structure
functions strongly violate the approximate similarity [G2(r)]

1/ζ(2) ∼ |G3(r)| (which is
used in ‘extended self-similarity’). The results of this experiment are in complete
agreement with a similar experiment that was analysed by Stolovitsky et al. (1993).
The asymmetry that is seen in this case appears to be genuine and might be caused
by the finite-size effect discussed in § 2. However, it must also be noted that the
flow in this case is highly anisotropic, with the longitudinal integral length scale
approximately a factor of three larger than the distance to the boundary.

On figure 17 we show scaling exponents ζ̃L(p) up to order p = 20. As stated
above, the exponents for p ∼> 14 are either from very small statistical samples of very
large velocity differences (figure 17a) or are determined from an extrapolation of
the probability density function towards large velocity differences (figure 17b). Fully
converged moments at p ≈ 20 are simply unattainable in a practical experiment.

The intermittency factor µ ≡ 2 − ζL(6) plays a central role in the statistical study
of turbulent fluctuations. It is the only parameter in the log-normal model (2.3)
and it is also the scaling exponent of dissipation correlations. From figure 17(a)
we deduce (from normalized ζp) µ̃ = 0.20, whereas from figure 17(b) we conclude
µ̃ = 0.17 ± 0.02. As expected, µ decreases when correcting for the finite sample size.
Let us emphasize that the quoted uncertainty reflects the measured variation of µ in
different experiments; the variation in repeated runs of the same experiment is much
smaller.

Obviously, the data of figures 17(a) and 17(b) show a consistent and significant
deviation from the Kolmogorov (1941) prediction. In § 2 several intermittency models
were discussed that predict the scaling exponent ζ(p). The question now is if our data
can discriminate between these intermittency models. From figure 17 it appears that
the simple Beta model, that predicts a linear ζ(p), is incorrect. Clearly, the structure
of the turbulent velocity field is more complex for a simple fractal with a single
dimension to be an adequate description. According to (2.3), the log-normal model
predicts the graph of ζ(p)/p to be a straight line that passes through the points
p = 3, ζ(3) and p = 6, ζ(6). Our data deviate from this linear behaviour only at rather
large values of p (p ∼> 10). Still, we believe that this deviation is significant. The
other multifractal models, in particular the one by She & Leveque (1994), follow
our data closely, although discrepancies are evident. Surprisingly, in this model it is
assumed that the strongest singularities are on lines, for which a line measurement in
three dimensions corresponds to a negative dimension of the intersection set. In the
case of a limiting single singularity strength hmin with Ds(hmin) = −2 + D(hmin) = 0,
the multifractal model predicts a large-p behaviour of the scaling exponent ζL(p)
according to (2.11). This prediction is shown for hmin = 0.16. The data appear to
favour this behaviour above the linear dependence on p of ζL(p)/p of the log-normal

model. Much of the scatter in the measured ζ̃(p) is due to the asymmetry between even
and odd exponents. Of course, this problem vanishes if moments of absolute-value
velocity differences |∆u| are considered. These results, not shown here, confirm our
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conclusions. Incidentally, the models discussed are scaling models and would equally
apply to moments of |∆u|; still we prefer comparison with the proper moments.

We conclude that the scaling exponent ζ̃L(p) differs very significantly from Kolmo-
gorov’s prediction ζL(p) = p/3. This scaling anomaly of turbulent velocity fluctuations
appears to be a genuine property of fully developed turbulence. Figure 17 is a central

result of this paper. It shows the consistency of the scaling exponent ζ̃L(p) in a range
of experiments that were done in a variety of turbulent flows. Most notably, the
conditions for application of Taylor’s hypothesis vary as u/U ranges from u/U = 0.05
to u/U = 0.18. Except at the largest values of p, much of the variation of ζL(p) is a
systematic variation. The scaling exponent depends on the details of the experiment
in a way that we do not understand completely. The experimental evidence for
intermittency and scaling anomaly has recently been questioned by Grossmann et
al. (1994) and attributed to finite-size effects and the presence of shear. The data
presented in figure 17(b), where a consistent anomaly is found for different flows, are
in clear disagreement with this suggestion.

The precision with which ζ(p) it can be measured in experiments, however, limits
our ability to discriminate between simple models that are based on quite different
grounds. A clear need arises to test other predictions of these models.

7.2. Multiscaling

One of these predictions concerns the precise functional form of the structure function.
The multiscaling property of multifractals leads to a prediction of the behaviour of
structure functions at separations r where viscosity is important. As explained in § 2
the consequence of multiscaling is that the scaling of Gp extends deeper into the
viscous subrange as p becomes larger. That this is actually the case may already be
discerned from figure 16 but we would like to quantify this effect more precisely.

Following the suggestion by Benzi et al. (1993) we write the structure function
as Gp(r) = (fp(r)r)

ζ(p). The function fp(r) gauges the deviation from ideal scaling
behaviour, Gp(r) ' rζ(p). As argued above, the multiscaling hypothesis predicts that
this deviation in the intermediate viscous range will be smaller for larger moments p.
For the moment we assume intermediate viscous scales to be η ∼< r ∼< 30η. In order to

highlight the p-dependence of fp(r) we define the residual function gp(r) ≡ fp(r)/f2(r).
Roughly, the behaviour of the function gp(r) for p > 2 will be as follows: (i) at very
small scales, r ≈ η, the velocity field is smooth and Gp(r) ' rp. Therefore, gp(r) ' rγ(p),
with a positive exponent γ(p) = p/ζ(p) − 2/ζ(2). (ii) In the intermediate viscous
range the multiscaling hypothesis predicts gp(r) > 1. (iii) For inertial-range scales,
30η ∼< r ∼< L, the (properly normalized) function gp(r) is unity because all scaling
behaviour has been captured in the exponent ζ(p). Summarizing, for r decreasing
from r ≈ L, the function gp is first constant, then increases and reaches a maximum
at intermediate viscous scales, and decreases again when r becomes O(η). According
to the multiscaling hypothesis, the steepness of the rise of gp increases with increasing
order p. The actual height of the maximum is controlled by unknown factors.

Figure 18 shows the function gp(r) on a log–log scale for various experiments. The
Taylor microscale Reynolds numbers in these experiments ranged from Reλ = 3×102

to 8×102. The small Reλ experiments, in particular, have a small inertial range where
gp(r) is flat. The spread of the measured gp(r) at large scales is not due to statistical
error but reflects the different experimental conditions of table 1. The results shown
in figure 18 were obtained without using the stretched-exponential extrapolation of
PDF’s. Using this extrapolation gives very similar results.
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Figure 18. Residual function gp(r) for p = 4 (dashed lines) and p = 8 (full lines) in a variety of
turbulent flows. The numbers are flow conditions in table 1. Experiment 1 was repeated at a large
enough sampling rate to resolve r ≈ 2η. The predicted small-r scaling behaviour of this experiment,
gp(r) ∼ rγ(p) is shown by the dotted lines.

The p-dependence of gp is precisely as predicted by the multiscaling hypothesis.
For the curves in figure 18 with the filter set at 10 kHz the temporal resolution is
not fine enough to observe the predicted maximum of gp(r). One of the experiments
was also done at a large enough sampling rate (45 kHz) to resolve r ≈ 2η. The
corresponding curves clearly show the maximum and agree with the predicted small-r
scaling, gp(r) ∼ rγ(p).

7.3. Transverse

Figure 19 shows transverse structure functions GTp (r) of order p = 3, 9 and 15. The

odd orders are defined as GTp (r) = 〈|∆u|p〉. Transverse probability density functions are
symmetric and these odd orders merely provide a convenient interpolation between
adjacent even orders. The statistical convergence of high-order moments was improved
by fitting stretched exponentials to the tails of measured PDFs. The transverse
structure functions also show clear evidence of scaling anomaly. Here we have again

found that ζ(3) deviates significantly from 1. The scaling exponents ζ̃T (p) for two
experiments in grid turbulence are shown in figure 20. As in the longitudinal case,
they have been normalized by dividing them with the measured ζT (3) = 1.08. We have
also determined the scaling exponents directly from measured PDFs, without using
the stretched-exponential extrapolation of the tails; the difference with the exponents
based on extrapolated PDF tails is only slight. Taking moments of absolute-value
velocity differences allows the computation of orders p 6 1. The associated scaling
exponents are also shown in figure 19 where ζ(p)/p for p = 0 is defined as the
scaling of exp(〈log |∆u|〉). The exponents for p 6 1 are also strongly anomalous. They
significantly disagree with the predictions of both the simple Beta and the random
Beta model, but agree with the log-normal model and the model by She & Leveque
(1994).

Comparison of the transverse results to the longitudinal scaling exponents in
figure 17 shows that for p ∼> 5 the deviation from ζT (p)/p = 1/3 is significantly
larger. In the language of the multifractal model this implies that the transverse



34 W. van de Water and J. A. Herweijer

2

1

102

r/g

0.5

101

p =15

p = 9

p = 3

5

[G
p]

1/
p 

(m
 s

–1
)

Figure 19. Dots: transverse structure functions of order 3, 9, and 15 measured in grid turbulence
(5 in table 1). The total number of velocity samples N is 1 × 108. Dashed lines: fits of ideal
scaling behaviour Gp(r) ∼ rζ(p) with ζ(p)/p = 0.35, 0.26, and 0.19, for p = 3, 9. and 15, respectively.
Because transverse probability density functions are symmetric, these odd-order structure functions
are defined as GTp (r) = 〈|∆u|p〉.
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Figure 20. Scaling exponents ζT (p)/p of transverse structure functions that were measured in grid
turbulence (5 in table 1). Open circles connected by lines: using a stretched-exponential extrapolation
of the tails of probability density functions; open squares: using measured PDFs only. The lines
represent the prediction of several intermittency models, that are detailed in the caption of figure 17.
The log-normal and Beta models are computed with µ = 0.30 and D = 3− µ = 2.70. The geometric
constraint of the multifractal model is now ζ(p) = 2 + hmin/p, with hmin = 0.05.

scaling exponents are determined by stronger singularities. The difference with the
longitudinal exponents now also shows in a marked discrepancy with the model by
She & Leveque (1994) and the random Beta model. We finally recall that, contrary
to the longitudinal case, measurement of the transverse structure functions does not
rely on Taylor’s hypothesis.
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8. Conclusion
In this paper we have given firm evidence for the anomaly of scaling exponents

ζ̃L(p), and have given initial results for the transverse scaling exponent ζ̃T (p). By
concentrating on the statistical convergence of high-order structure functions, both
by using new instrumentation and by careful extrapolation of PDFs, we have been

able to give precise values for ζ̃L(p) that do not appear to depend on the particular
experimental configuration.

The transverse scaling exponent ζ̃T (p) deviates more strongly from the Kolmogorov
(1941) result than the longitudinal scaling exponent. Several interesting speculations
about the meaning of this result are possible. The first one is that the stronger anomaly

of ζ̃T (p) is due to anisotropy of the flow. However, the longitudinal scaling exponent

ζ̃L(p) of the same flow arrangement agrees with that of other flow geometries (see
for example figure 17b). If the strongest singularities in turbulence exist on lines, a
heuristic explanation of the stronger transverse anomaly would be that the chances
of intersecting these in a planar (transverse) setup are bigger than in the longitudinal
one. Noullez et al. (1997) give a quantitative argument illustrating the greater ease of
detecting a slender vortex filament in a transverse setup.

An intriguing question is whether new physics will emerge when using ever longer
integration times that allow the measurement of ever larger-order moments. The
answer to this question lies in the asymptotic form of the scaling exponent ζ(p) for
large p. Integration times do not need to be longer than necessary for establishing
this asymptotic form. It would be interesting to study the fluctuations in high-order
moments. If those are determined by the geometry of intersecting fractal sets, the
appropriate framework would be the theory of large deviations (Mandelbrot 1990).

We believe that experiments on the small-scale structure of turbulence should ex-
ploit different geometric arrangements for measuring velocity statistics. A program of
these experiments (with new ways of real-time data processing) is currently underway
in our laboratory. In the present work we have emphasized instrumentation aspects
and we have found that highly non-trivial questions remain, for example concerning
the precise understanding of probes that can be used to accurately measure small-scale
motion.

We have not touched upon the scaling with Reynolds number. In our experiments it
could at most be varied by a factor of two to four. At small values (Reλ ≈ 200) a scaling
inertial range is absent and scaling exponents could not be determined dependably.
On the other hand, the largest Reλ is restricted by the finite size of the laboratory
experiment. In conventional laboratory experiments it may be possible to push the
largest Reλ to 2000, in which case the Reynolds number can be varied by one order
of magnitude. A large range of Reynolds numbers has been be accessed by Chabaud
et al. (1994) and Maurer, Tabeling & Zocchi (1994) in laboratory-scale experiments
employing helium gas at cryogenic temperatures. Because the Kolmogorov length is
O(µm), the instrumentation of these experiments is still difficult. The advantage of
laboratory turbulence experiments in air is that instrumentation development (such as
for measuring transverse velocity differences) is well feasible. A very significant step
forward would be the combination of these two approaches in a single experiment.

Essential contributions to this work have been by Jan Niessen and Gerard Trines
who have designed and built the computer controlled anemometers, and by Rob van
der Berg, who has manufactured numerous hot- wire probes. This work is also part
of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’, which is finan-
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cially supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO)’.
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73, 3227–3231.

Comte-Bellot, G. & Corrsin, S. 1966 J. Fluid Mech. 25, 657–682.

Frisch, U. 1995 Turbulence; The Legacy of A. N. Kolmogorov. Cambridge University Press.

Frisch, U., Sulem, P.-L. & Nelkin, M. 1978 J. Fluid Mech. 87, 719–736.

Frisch, U. & Vergassola, M. 1991 Eur. Phys. Lett. 14, 439–444.

Grossmann, S., Lohse, D., L’Vov, V. & Proccacia, I. 1994 Phys. Rev. Lett. 73, 432–435.

Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. & Sraiman, B. I. 1986 Phys. Rev. A
33, 1141–1151.

Herweijer, J. A., Nijmweegen, F. C. van, Kopinga, K., Voskamp, J. H. & Water, W. van de. 1994
Rev. Sci. Instrum. 65, 1786–1787.

Jensen, M. H., Paladin, G. & Vulpiani, A. 1991 Phys. Rev. Lett. 67, 208–211.

Kailasnath, P., Sreenivasan, K. R. & Stolovitsky, G. 1992 Phys. Rev. Lett. 68, 2766–2769.

Kolmogorov, A. N. 1941 Dokl. Akad. Nauk. 26, 115. (Reprinted in Proc. R. Soc. Lond. A 434, 9–13
(1991).)

Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82–85.

Kuznetsov, V. R., Praskovsky, A. A. & Sabelnikov, V. A. 1992 J. Fluid Mech. 243 595–622.

Mandelbrot, B. B. 1974 J. Fluid Mech. 62, 331–358.

Mandelbrot, B. B. 1990 Physica A 163, 306–315.

Maurer, J., Tabeling, P. & Zocchi, G. 1994 Europhys. Lett. 26, 31–36.

McWhirter, J. G. & Pike, E. R. 1978 J. Phys. A 11 1729–1745.

Meneveau, C. & Sreenivasan, K. R. 1987 Phys. Rev. Lett. 59, 1424–1427.

Meneveau, C. & Sreenivasan, K. R. 1991 J. Fluid Mech. 224, 429–484.

Molenaar, J., Herweijer, J. A. & Water, W. van de 1995 Phys. Rev. E 52, 496–509.

Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, Vol. II. (MIT Press).

Noullez, A., Wallace, G., Lempert, W., Miles, R. B. & Frisch, U. 1997 J. Fluid Mech. 339,
287–307.

Paladin, G. & Vulpiani, A. 1987 Phys. Rev. A 35, 1971–1973.

Parisi, G. & Frisch, U. 1985 Proc. Intl School in Physics, ‘E. Fermi’, Course LXXXVIII (ed. M.
Ghil, R. Benzi & G. Parisi), p. 84. North Holland.
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